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Periodic states in intermittent pipe flows: Experiment and model
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We report an experimental study of a transition to periodic intermittency in pressure-driven pipe
flows. The transition is preceded by a rapid increase of the intermittency factor with pressure. To model
intermittent pressure-driven flows, we introduce a general model, where a fifth-order Ginzburg-Landau
equation is coupled with a pressure-velocity relation that takes into account the frictional effect of the
turbulence on the flow velocity. We determine the phase diagram and show that the model gives a quali-
tative understanding of the transition to periodic intermittency.

PACS number(s): 47.20.—k, 47.27.Cn, 47.27.Eq

I. INTRODUCTION

An intriguing feature of the transition to turbulence is
the sudden appearance of turbulent slugs that intermit-
tently break the laminar flow [1-3]. Although slugs usu-
ally seem to be generated randomly, periodic generation
of slugs are often observed when the flow is pressure
driven [3-5]. In this paper we put the production of
periodic states under closer scrutiny. We report measure-
ments on the periodic states, which we find to stabilize at
intermittency factors [6] ¥ above 0.6. At lower ¥ values,
signatures of the periodic state are observed in the distri-
bution of laminar lengths. In order to explain the charac-
teristic features observed, including a notable jump in y
vs pressure, we introduce a fifth-order Ginzburg-Landau
equation [7,8] coupled with a pressure-velocity relation
that takes into account the frictional effect of the tur-
bulence on the flow velocity.

II. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1. A cylindri-
cal glass pipe, d =1 cm in inner diameter and L =150 cm
in length, was used. Plastic tubes, 4 cm in inner diame-
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FIG. 1. Schematic illustration of the experimental setup. S,
straws; F, fly screen; C, smooth contractions (angle to axial
direction <9°); L, He-Ne laser; R, rectangular cell filled with
water for elimination of undesirable refraction; PM, photomul-
tiplier.
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ter, connected the pipe to reservoirs. The working fluid
was deionized water containing a few drops of homogen-
ized milk whose particles acted as scattering agents (re-
sulting concentration ratio ~107%). To remove fluctua-
tions originating from the reservoirs, the inlet section was
fitted with tightly packed straws, 9 cm long and 0.5 cm in
diameter, and a fly-screen (aperture size = 2.0 mm) was
placed 5 cm downstream from the straws and 30.5 cm
upstream from the pipe entrance. The axial velocity V()
in the center of the pipe, 7 cm from the outlet, was mea-
sured by laser Doppler velocimetry, using a 15-mW He-
Ne laser. The scattered light was detected by a pho-
tomultiplier whose output went to a DANTEC 58N20
flow velocity analyzer, where Doppler signals with less
than 60 cycles were rejected. The typical sampling rate
was about 100 Hz.

III. EXPERIMENTAL RESULTS

Two set of experiments were carried out. Due to the
smooth contraction section, the onset of turbulence oc-
curred at relatively high Reynolds numbers, Re~20000
and 26 000. Here, Re= Ud /v, where U is the bulk veloc-
ity, and v is the viscosity of the fluid. In Figs. 2(a) and
2(b) we show the velocity ¥ (¢) measured at intermittency
factors ¥ =0.33 and 0.65. V(¢) is observed to alternate
between a value V., where the flow is laminar, and a
value V¢, where the flow is turbulent [9]. In Fig. 2(b) the
alterations in velocity are seen to be essentially periodic.
Aside from occasional phase slips [Fig. 2(e)], the periodic
states are extremely stable, much longer than the 30-min
acquisition time. We estimate the bulk velocity U to be
U,=0.67V, in the laminar state and U;+=0.8V 1 in the
turbulent state [10].

The periodic state is only observed at intermittency
factors above y =~0.6 (inset of Fig. 3). Below this value
we observe a rapid increase in ¥ vs U,. At this transi-
tion hybrid states are observed, where the periodic
behavior is disrupted by intermittent bursts. For
¥ =0.35 the selected laminar time scale can barely be ob-
served as a developing peak in the distribution p(z,) of
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FIG. 2. Left: axial velocity V vs time ¢, measured at the
center and near the outlet: (a) y=0.33; (b) y=0.65. Right:
bulk velocity U vs time ¢ (in units of update—time step) found
from simulations of Eq. (1): (c) ¥=0.28; (d) ¥ =0.57. Below:
(e) periodic intermittency with occasional phase slips; ¥ =0.65.
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FIG. 3. Intermittency factor ¥ vs the laminar bulk velocity
U, found from simulations of Eq. (1) with 0 =0.077U [t — T(¢)]
and pu=—0.0384. (Q) No noise (y jumps from 0 to 7. =~0.6 at
U,=U,=2.60). (O) Noise 7=0.25. ({) Noise 7=0.5. Inset:
v vs U, from experiments; the onset of turbulence is at (®)
U,=2.0m/s,and (0) U;=2.65 m/s.
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laminar times [Figs. 4(a)]. By the laminar time ¢, (here
given in units of the advection time 7,=L /U /) we refer
to the time it takes for a laminar interval between two
slugs to pass the measuring point. In Figs. 4(b) and 4(c)
we show the velocity dependence of the mean laminar
time 7,/7, and the mean turbulent time g /7
(r¢=L /Ug). We note that 7, diverges at the onset of
turbulence; at U, =2.0 m/s and U, =2.65 m/s, respec-
tively. At increasing values of U, ¥, makes a dip, then
rises to a plateau where 7, =~37,. The dip signifies the
point where the peak starts to develop; at the plateau the
peak in p(z,) is very pronounced, corresponding to a
periodic state. If we consider 7, this is seen to change
from 74 =7, where noise dominates [11], to a plateau at
fo=~47¢, where periodic states are observed.

IV. MODEL

In order to understand qualitatively the one-
dimensional nature (spatial scale >>d) of slug production
in intermittent pipe flows, we consider a phenomenologi-
cal fifth-order Ginzburg-Landau model [7,8]

84 __av a4 034
at 94 Ix? ox

s (1a)

where A(x,t) is a real function of the position x along the
flow and the time ¢, and

V(A,u)=—pA?/2—A*/4+ A°/6 . (1b)
A (x,t) serves as an order parameter for the state of the
flow, and the coefficient U represents the bulk velocity of
the flow. The boundary conditions are taken to be

A0,t)=0 , a—A(L,t)=0 . (1c)
ax

The first boundary condition reflects the assumption that
disturbances enter the system and subsequently are ad-
vected downstream [8]. The latter boundary condition
reflects the fact that the outlet is not a source of distur-
bance (no reflections, etc.) [12].

The sixth-order form of the potential ¥ ( 4) models the
subcritical nature of the transition to turbulence. The
corresponding bifurcation diagram is shown in the inset
of Fig. 5. When u<—1%, V(4) has a global laminar
minimum at 4 ,=0. In the range —+<u <0, V(4)isa
three-well potential with local minima at 4 ,=0 and
Ag(p)=(1+Vvu+1/4)"* and a local maximum at
A (p)=E—Vu+1/)V2 At p=py=—3%, V(A4,)
=V(A7)=0. Only above u,, will a turbulent slug grow.
We shall associate turbulence with a value of the order
parameter A larger than a critical value 4., chosen to be
A,= A7(—1)=1/V2. Otherwise the flow will be con-
sidered laminar. Figure 5 shows the first phase diagram
obtained for Eq. (1) [L > 100]. For every value of o there
is a tongue separating the laminar state from the tur-
bulent state (laminar below the tongue). At large veloci-
ties the transition between laminar and turbulent flow is
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FIG. 4. (a) Distributions of laminar times for ¥ =0.35 (thick line) and 0.65 (thin line). (b) Mean laminar and (c) mean turbulent
times vs the laminar bulk velocity U,. Symbols as in the inset of Fig. 3. Insets: corresponding results obtained from simulations of
Eq. (1) with 0=0.077U [t —T'(¢)] and u= —0.0384. (a) y =0.28 (thick line) and 0.57 (thin line). (b) and (c) Symbols as in Fig. 3. In

the case of no noise, 7, jumps to infinity at U, = U, =2.60.

given by A4,(u)=o0, but at lower velocities a hysteretic
regime exists [8], where the selected state depends on the
history. Also shown in Fig. S is the line separating the
convective flow from the absolute unstable flow.

To model pressure-driven pipe flows, we must take into
account that the bulk velocity decreases when the frac-
tion f of turbulence in the pipe increases, due to larger
friction. More precisely, Eq. (1) must be coupled with a
relation [13] U=U(G, f 1), where G is the dimensionless
pressure gradient [14] G =gd3Ah /v*L. This pressure-
velocity relation is essential for the formation of periodic
states. The total pressure drop is the sum of the pressure

drop over the laminar part and the pressure drop over
the turbulent part of the flow. We assume that U(G, f¢)
is implicitly given by

G=f_£a_£RebL +f:ra7-Reb7 N 2)

where f,=1—f+. In terms of the order parameter A,
the fraction of turbulence in the pipe is

fen= foLO(A(x,t)—Ac)dx /L, 3)

where 6 is the theta function. The parameters a, and b,
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FIG. 5. Phase diagram for Eq. (1) at large L. The tongues
separating the laminar from the turbulent flow are shown for
0=0.2, 0.4, 0.5, and 0.6 (from top to bottom). The dashed line
is the transition line between the convective and the absolute
unstable flows. Also shown is the curve u(U)=—0.1U"". In-
set: bifurcation diagram for Eq. (1).

for the fully laminar flow (f ; =1) were determined exper-
imentally to be a ,=0.006 and b, =2 (Fig. 6). For the
fully turbulent flow (f4+=1), we use the parameters
ar=0.32 and b= 3 found from Refs. [3] and [15].

V. NUMERICAL RESULTS
AND COMPARISON WITH EXPERIMENTS

In our simulations of Egs. (1) and (2), L is taken to be
256, and the Reynolds number in Eq. (2) is replaced by
5000U (see below). The flow is more stable at lower ve-
locities. Since o represents the disturbance at the en-
trance, and u is the instability parameter, we thus expect
both to increase with velocity. Furthermore, pu is in gen-
eral a function of the spatial coordinate x as well. Here
we consider either u or o (but not both) as an increasing
function of the velocity. In either case we find a strict
periodic behavior. We shall see that the exact form of
these two functions does not affect the physics in a
significant way. Moreover, in general accordance with
experiment, we find that the front and rear of a developed
slug are sharp (width =5) and move independently; their
velocities depend only on the velocity U.

Consider the case 0 =0.2 and u(U)=—0.1U """ (well
inside the convective unstable regime; see Fig. 5). Our
constraint U(Re=5000)=1 implies that p(Re=2000)
=—1, which expresses the observation that no tur-
bulence is sustainable below Re~2000 [1-3]. The onset
of turbulence is found at u(U)=—0.0384[ 4,(n) =0.2],
hence at U=U,=2.60, corresponding to a Reynolds
number Re=13000. The key element in sustaining a
periodic cycle lies in the consistency with which the flow
rate moves above (A ¢ stable) and below (A4 , stable) the
critical velocity U,. The periodic state is dominated by
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FIG. 6. Double-logarithmic plot of dimensionless pressure
gradient G vs Reynolds number Re. In the intermittent regime,
Re alternates between a laminar value (circles) and a turbulent
value (squares). The onset of turbulence occurs at Re~20000
(filled symbols) and Re=26000 (open symbols). The laminar
values follow a quadratic fit, G =0.006Re’ (solid line). Above
our data is shown the line assumed for the fully turbulent flow,
G =0.32 Re’”* (dashed line).

the advection time 7, =L /U,=100. A universal feature
of the transition to periodic intermittency is an abrupt
jump in the intermittency factor y (determined at x =L).
In the present case we find that y jumps to a value
v.==0.4. In most cases of interest, however, the constant
disturbance o plays the role of the zero-order Fourier
component of a noisy signal; superimposing random fluc-
tuations, the jump is smooth. However, to observe
periodic states the scatter 8u in u imposed by the noise,
A (uxdu)=o0(1F7), must be smaller than the change
wU,)—p(Ug) due to friction. Experimentally, this
translates into a restriction on the critical Reynolds num-
ber for a given pipe length.

Next, consider the <case o(U)=0.077U and
p=—0.0384. The onset of turbulence is at U, =2.60
(0 =0.2) as before. Not surprisingly, we find essentially
the same results. However, a difference between model
and experiment is found: experimentally, the period is
longer than the advection time. The difference indicates
that the primary source of disturbance lies behind the
pipe entrance (x =0). However, these disturbances first
affect the flow when entering the pipe. To simulate the
time delay we assume that o is a retarded function of U,
0=0.077U [t —T(t)], where T'(t) is the time it takes a
fluid element to travel from the source of disturbance to
the pipe entrance, i.e., [|_,U(r)d7=L,, where Ly is a
geometry-dependent constant (L, depends on the form of
the contraction section) [16]. We have simulated Egs. (1)
and (2) with the retarded boundary condition, taking
L,=2L. We find that the value of the intermittency fac-
tor at the transition to periodic intermittency is larger
than before (y,~0.6), and the emergence of a plateau fol-
lowing the jump is consistent with experiments (Fig. 3).
Adding noise allows us to make a closer comparison with
experiment. We therefore consider the situation where
A (0,t) at every time step At =1/U is chosen from a uni-
form distribution between (1—7)o(U[t—T(z)]) and
(1+7)o(U[t —T(1)]). The resulting behavior of the in-
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termittency factor is shown in Fig. 3 for 7=0.25 and 0.5;
the jump in y becomes steeper at lower values of 7. Ac-
cordingly we find a steeper jump in y for the high-Re ex-
periment.

In Figs. 2(c) and 2(d) the bulk velocity U (t) obtained
for n=0.5 is shown at intermittency factors y =0.28 and
0.57. In accordance with experiments, a clean periodic
behavior is seen at high y values [Fig. 2(d)], while noise
dominates at low-y values [Fig. 2(c)]. When ¥ is not too
low, the laminar time scale gives rise to a peak in the dis-
tribution p(z,) of laminar times [inset of Fig. 4(a)]. In
the inset of Figs. 4(b) and 4(c), we show the velocity
dependence obtained for the mean laminar time 7, and
the mean turbulent time f; in units of the advection
times 7, and 7¢. In qualitative agreement with experi-
ment, 7, has a dip before rising to a plateau, signifying
the onset of periodic intermittency. The value of 7, at
this plateau depends on the choice of L; here , =37,.
The qualitative behavior of 74 also agrees with experi-
ment. It changes abruptly from a noise dominated re-

gime where 7+ ~7¢ to a plateau at ¥4 =37, where clear
periodic states are observed.

VI. CONCLUSION

In summary, we have introduced a general model for
intermittent pressure-driven pipe flows that reproduce
qualitatively the characteristic features found at the onset
of periodic intermittency. However, the model can be
applied to explain other features as well. One of them is
the puffs found at Re~2500 [2]. These are stable tur-
bulent droplets that do not grow. In our phase diagram
(Fig. 5) this corresponds to a value p=pu,. A slug
formed above but near u=p,, will only spread until
=, and then stabilize as a turbulent puff.
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FIG. 1. Schematic illustration of the experimental setup. S,
straws; F, fly screen; C, smooth contractions (angle to axial
direction <9°); L, He-Ne laser; R, rectangular cell filled with
water for elimination of undesirable refraction; PM, photomul-
tiplier.



